Cognitive Neuroscience Techniques in Supporting Decision Making and the Analysis of Social Campaign
DOI:
https://doi.org/10.23918/ijsses.v5i1p122Keywords:
Cognitive Neuroscience, Behavioural Aspects, EEG, GSR, HR, Decision Making Support, Social AdvertisementAbstract
The development of Cognitive Neuroscience Techniques application in the recent period and their usage in various areas of knowledge has allowed us to understand cognitive processes related to the human brain functioning. They allow us to better understand human behavior, when they make decisions. This study refers to the experiment participant’s examination during the selection of the product according to their preferences by means of modern neuroscience techniques. In addition, it has been checked how quickly the experiment participants become subject to fatigue in the course the decision-making process and the decision analysis. The individual shots of the advertising spot (saving electricity) were also verified with regard to their impact on remembering the recipient. In the experiment, data required to analyze the experiment participant’s preferences where registered by means of electroencephalogram (EEG), the measurement of galvanic skin response (GSR) and heart rate (HR).
References
Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219–233.
Duckstein, L., & Gershon, M. (1983). Multicriterion analysis of a vegetation management problem using ELECTRE II. Appl. Math. Model 4,254–261.
Faizi, S., Rashid, T., & Sałabun, W., Zafar, S., & Watróbski, S. (2017). Group Decision-Making for Hesitant Fuzzy Sets Based on Characteristic Objects Method. Int. J. Fuzzy Syst. 9, 1.17. doi:10.1007/s40815-017-0313-2
Grolleau, J., & Tergny, J. (1971). Manuel de reference du programme ELECTRE II. Document de travail 24, SEMA-METRA International.
Karagiannidis, A., & Moussiopoulos, N. (1997). Application of ELECTRE III for the integrated management of municipal solid wastes in the greater Athens area. Eur. J. Oper. Res. 439–449.
Kotler, P., Roberto, N., & Lee, N. (2002). Social Marketing: Improving the quality of life. Thousand Oaks. California: Sage.
Mousseau, V., Figueira, J., & Naux, J. P. (2001). Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. Eur. J. Oper. Res. 130, 263–275.
Nermend, K. (2017a). The Implementation of Cognitive Neuroscience Techniques for Fatigue Evaluation in Participants of the Decision-Making Process. In: Nermend K, Łatuszyńska M (eds) Neuroeconomic and behavioral aspects of decision making. Springer Proceedings in Business and Economics. Springer.
Nermend, K. (2017b). Metody analizy wielokryterialnej i wielowymiarowej we wspomaganiu decyzji, PWN, Warszawa.
Piwowarski, M. (2017). Cognitive Neuroscience Techniques in Examining the Effectiveness of Social Advertisements. In Nermend K., Łatuszyńska M. (eds) Neuroeconomic and behavioral aspects of decision making. Springer Proceedings in Business and Economics. Springer
Prochenko, P. (2017). Retrieved from https://kampaniespoleczne.pl/wiedza_definicje, 2324, kampania_spoleczna_definicja_fundacji_komunikacji_spolecznej
Porochenko, P. (2007). Reklama społeczna w Polsce – przegląd i próba systematyzacji. Trzeci Sektor, nr 11
Roy, B. (1968). Classement et choix en pr´esence de points de vue multiples (la methode ELECTRE), pp 57–75
Scharlig, A. (1996). Pratiquer ELECTRE et PROMETHEE : Un Complement`a Decider sur Plusieurs Crit`eres. Polytechniques et Universitaires Romandes, Lausanne.
Saaty, T. (1980). The analytical hierarchy process. McGraw-Hill, New York.
Saaty, T. (2005). The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making. In Multiple criteria decision analysis: state of the art surveys. Springer New York, pp 345–405.
Scheffs, Ł. (2015). Marketing społeczny, kampania społeczna i reklama społeczna – próba systematyzacji pojęć. In Kampanie społeczne jako forma socjotechniki, (ed) Pawełczyk P., Wolters Kluwer, Warszawa.
Summerfield, C., & Mangels, J.A. (2005). Coherent theta-band EEG activity predicts item-context binding during encoding. NeuroImage, 24(3), 692–703.
Vallée, D., & Zielniewicz, P. (1994). Electre III-IV, version 3. x. Guide d’utilisation (tome 2). Université de Paris Dauphine, France.
Vecchiato, G., Maglione, A.G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., Latuszynska, M., Nermend, K., Graziani, I., Leucci, M.R., Trettel, A., & Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine.
Wątróbski, J., Ziemba, P., Jankowski, J., & Zioło, M. (2016). Green energy for a green city: A multi-perspective model approach. Sustain 8(8), 702. doi: 10.3390/su8080702
Werkle-Bergner, M., Muller, V., Li, S., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: implications for lifespan comparisons. Neuroscience and Biobehavioral Reviews, 30(6), 839–854.
Ziemba, P., Jankowski, J., Wątróbski, J., & Piwowarski, M. (2016). Web projects evaluation using the method of significant website assessment criteria detection. In Nguyen NT, Kowalczyk R (eds.) Transactions on computational collective intelligence XXII. LNCS, vol. 9655, pp. 167–188. Springer-Verlag, Berlin Heidelberg. doi: 10.1007/978-3-662-49619-0_9.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Social Sciences & Educational StudiesInternational Journal of Social Sciences & Educational Studies applies the
Creative Commons Attribution-NonCommercial 2.0 Generic Licence (CC BY-NC 2.0)